
May/June 2009 www.stsc.hill.af.mil 9

Software applications are being called
upon to perform ever-increasing, safe-

ty-critical activities. To that end, software
engineering is increasingly using automat-
ed tools and updated methods to sustain
and gain better intellectual manageability
over these solutions. The Missile Defense
Agency’s (MDA) Global Engagement
Manager (GEM) development is an exam-
ple of integrating these software method-
ology constraints. At the same time, soft-
ware safety assurance requirements
remain unchanged and mature software
safety processes exist. The strategy used
in the GEM software development
methodology was to leverage the pedigree
of existing software safety methods and
adapt them to model-driven software
development. The advancing software
development methodologies lend them-
selves to a rich, comprehensive approach
to safety analysis.

Software Applications Are
Becoming Increasingly Complex
The MDA has the mission to provide
mechanisms that protect the homeland,
deployed forces, friends, and allies from a
ballistic missile attack. To frame the prob-
lem, ballistic missile defense has a global
scale. Threats can originate from any
region and be directed at any destination.
Since the battlespace will most likely cross
multiple areas of responsibility, coordina-
tion among command echelons is critical
to prioritize the available radar and inter-
ceptor resources. To that end, the MDA’s
Command, Control, Battle Management,
and Communications (C2BMC) program
has been developing a series of products
to enable the DoD to integrate individual
sensor and weapon system elements into
their Ballistic Missile Defense System
(BMDS). One of the C2BMC’s products
is the GEM.

The GEM’s objective is to provide the
warfighter with execution-time decision
aids to enable them to think globally while

acting locally, thereby effectively using the
BMDS element resources for the globally
integrated active missile defense.
Generally speaking, the warfighter’s tasks
are to:
• Maintain a deep understanding of the

active defense design with its branches
and sequels.

• Monitor the ballistic missile battle-
space.

• Assess gaps from differences in the
anticipated and actual enemy courses
of action.

• When appropriate, manage by excep-
tion1.
Present warfighter doctrine involves

centralized planning while executing in a
decentralized fashion. Anticipating the use
of automated battle management capabil-
ities to support decisions, warfighters
must plan for retaining control over the
automation as weapon systems/sensors
join and leave the BMDS network. So, the
deployment planning process for the
BMDS will need to account for effectively
integrating technology, processes, and per-
sonnel. As the BMD operations are read-
ied for alert, the commander’s intent and
engagement priorities are configured in
the GEM. As suspect tracks are detected
and tracked, additional sensor resources
can be utilized to gather more information

on objects of interest. If tracks are
assessed to be a threat, a layered defense
based on priority will be calculated. Under
an operator’s control, weapon-system
tasking will be issued to BMDS weapon
systems. One can expect responses such
as will comply, cannot comply, etc. This can be
due to battlefield effects or conflicts
among missions within a multi-mission
platform. If an element is unable to sup-
port an engagement, the operators can
immediately assess and task other ele-
ments within the layered defense. Suspect
tracks will be prompted to the operators
for disposition. If they are promoted to
threat status, they will be prioritized and
assigned appropriate interceptors. This
workflow continues throughout battle.

In addition to being a decision aid, the
GEM has a second responsibility, a system
of systems (SoS) challenge. In looking at
SoS research, failures occur when one sys-
tem’s failure cascades across connected
systems or when properly working sys-
tems interact in unanticipated ways. The
present state of practice is to have a con-
troller manage emergent behavior. Even
though fire control remains with the
weapon systems engagement function, it
is envisioned that the GEM will be
assigned the SoS controller role for the
BMDS. To globally control effective, exe-
cution-speed coordination (in the face of
battlefield effects), unanticipated adver-
sary actions, and multiple command struc-
tures, the GEM is to be built to have a
level of predictability, dependability, and
correct behavior that the warfighter can
depend on during the fog of war.

Software Development
Increasingly Uses Automated
Tools and Updated Methods
To gain the warfighter’s trust in such a
mission-critical environment, the GEM
decision aid must have predictable behav-
iors across the broad environmental con-
ditions in which the product may find

Software Safety for Model-Driven Development

With software applications becoming increasingly complex and the demand for rapid deployment (including rapid prototyp-
ing) of software applications increasing, automated tools and updated methods for software development have become neces-
sary. It follows that these new software development processes require new approaches for software safety. One company’s
15-element Software Safety Process has now been adapted to a model-driven, spiral software development effort. This process
provides an open working relationship to incrementally identify the causes of hazards at different levels.

Howard D. Kuettner, Jr., and William A. Christian
APT Research, Inc.

Timothy J. Trapp
Raytheon

“The strategy ... was to
leverage the pedigree
of existing software
safety methods and

adapt them to
model-driven

software development.”

Donald S. Hanline II
U.S. Army AMCOM

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-05-2009 to 00-06-2009

4. TITLE AND SUBTITLE
Software Safety for Model-Driven Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Aviation and Missile Command (AMCOM),ATTN:
AMSAM-SF-A,Redstone Arsenal,AL,35898-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Rapid and Reliable Development

10 CROSSTALK The Journal of Defense Software Engineering May/June 2009

itself operating. To achieve that end, the
Advanced Battle Management (ABM)
development process was crafted from
carefully selected modern software devel-
opment methodologies. The key princi-
ples came from model-driven develop-
ment, model-based acquisition, service
orientation, and Agile software develop-
ment methodologies (as shown in Tables
1 and 2). They were applied to the differ-
ent activities in the development life cycle
(i.e., specification, domain analysis,
design, implementation, and testing activ-
ities).

The goal is to develop and maintain a
common model of the product’s behavior
so that it optimizes errors and defect
exposure at the time they are introduced
in the software. A prime contributor to
errors and defects are language barriers in
systems. This approach strives to create a
common understanding across stakehold-
ers by mapping and relating perspectives
and points of view into a composite spec-
ification. It relates:
• Human-machine interface tasks.
• Functional threads of behavior.
• Use cases to capture desired behavior.
• Collaboration-like activity diagrams,

state charts, and algorithm definitions
to capture design.

• Code-generated executable models.
• Supporting software to create a

dynamic specification that can be
assessed.

• Verification cases for further analysis
and test.
A second key source of defects is

related to the misinterpretation of statical-
ly written requirements. This process cap-
tures the specification in a way that can be
exercised to see if the desired behavior
really does occur. This is called an exe-
cutable model. So, by analyzing this
model, one can both evaluate the proper
behavior and also reason about the pre-
dictable responses of the system when it is
faced with faults or conditions beyond its
operational bounds.

A complicating factor in software
development is identifying errors as they
are introduced during implementation. A
dominant Agile development methodolo-
gy tenet used in the ABM development
process is short iterations. The design,
implementation, and analysis is performed
on a small incremental portion of the
GEM’s required behavior. An iteration
consists of completed feature sets with
automated test suites. That is, iterations
deliver working code with working tests
every two weeks. In general, development

activities are broken into three major
release categories (shown in Figure 1):
1. Iterations: Two weeks of develop-

ment (approximately five iterations per
cycle).

2. Cycles: Approximately two months of
development (approximately six cycles
per increment).

3. Increments: Approximately one year
of development.

Example of Integrating
These Software
Methodology Constraints
To initially determine and capture the cor-
rect dominant behavior, use cases are used
as the documentation tool capturing func-
tional behavior from warfighters, analysts,
and subject matter experts. Use case
extensions are used to reason through
behavior under adverse conditions, such
as load shedding and fault handling. Safety,
performance, mission assurance, human
factors, and information assurance con-
cerns are analyzed and incorporated into
the use cases. With this behavioral defini-
tion captured, detailed design incorporates
architectural constraints and further elab-
orates finer-grained behavior that is only
exposed with detailed design.

At GEM’s foundation is an architec-
ture that follows well-established business
logic. The GEM uses the kill chain: detect,
track, assign, engage, and assess. Second,
from that stable and well-understood
structure, behavior that is more apt to
change is isolated into components. These
components interact only with the stable
structure, never with each other. Third, a
reactive system of this type demands pre-
dictable performance. Between compo-
nents, the GEM utilizes data queue and
blackboard structures—called data
stores—for information exchange. In the
GEM’s case, components must operate
concurrently. Each component uses input
from prescribed data stores. The safety
framework monitors information that
flows through the data stores, leveraging
policies that are captured in assertions to
trigger the safety executive and safety ker-
nel functions into action.

The approach starts with defining poli-
cies that capture key behavioral require-
ments. These policies represent critical
behavior that assesses proper operation of
the GEM. Many policies are then convert-
ed into assertions in logic, linear temporal
logic, and/or state charts. By monitoring
these assertions in a run-time monitor, fault
conditions can be detected, mitigated, or
possibly avoided. For safety, critical safety
assertions are monitored in the safety exec-

• Develop a ubiquitous language.
• Remove grey-matter translations.
• Institute shared understanding of the

customer, user, subject matter expert,
engineer, software engineer, and tester.

• Incorporate model checking and code
generation (to allow the specification to
be tested without significant investment
in implementation).

• Verification of GEM behavior in the specification phase.
• Verification of GEM computation code from third-party vendors.
• Component-based software engineering.
• Verification of modules prior to integration.
• Verification of safety components that ensure continuity of

operations against all run-time faults.
• Separation of computational code from behavior code:

° Design by contract.

° Verification of assertions in the specification phase.

° Asynchronous messaging among software modules.
• Test oracles with automated test procedures:

° Verified distributed system behavior in the specification

° Unified process approach with no more than two-month

° Validation of implementation against the GEM model

° Verification of meeting hard real-time deadlines.

Principles From Agile Practices Principles From Service Orientation

• Short iterations
• Automated test
• Continuous builds
• Re-factoring
• Retrospectives
• Daily stand-ups
• Feature-based development

• Service reusability: Logic divided into services with the intention of
promoting reuse.

• Service contract: Services adhere to a communications agreement,
as defined collectively by one or more service description documents.

• Service loose coupling: Services maintain a relationship that minimizes
dependencies and only requires they maintain awareness of each other.

• Service abstraction: Beyond what is described in the service contract,
services hide logic from the outside world.

• Service composability: Collections of services can be coordinated
and assembled to form composite services.

• Service autonomy: Services have control over the logic they encapsulate.
• Service statelessness: Minimize retaining information specific to

an activity.
• Service discoverability: Services are designed to be outwardly

descriptive so they can be found and assessed by discovery mechanisms.

Principles from Model-Driven Development Principles from the Model-Based Acquisition Approach

phase.

cycles.

at the conclusion of each cycle.

Table 1: Selected Model-Driven Attributes Used in the ABM Development Process

• Develop a ubiquitous language.
• Remove grey-matter translations.
• Institute shared understanding of the

customer, user, subject matter expert,
engineer, software engineer, and tester.

• Incorporate model checking and code
generation (to allow the specification to
be tested without significant investment
in implementation).

• Verification of GEM behavior in the specification phase.
• Verification of GEM computation code from third-party vendors.
• Component-based software engineering.
• Verification of modules prior to integration.
• Verification of safety components that ensure continuity of

operations against all run-time faults.
• Separation of computational code from behavior code:

° Design by contract.

° Verification of assertions in the specification phase.

° Asynchronous messaging among software modules.
• Test oracles with automated test procedures:

° Verified distributed system behavior in the specification

° Unified process approach with no more than two-month

° Validation of implementation against the GEM model

° Verification of meeting hard real-time deadlines.

Principles From Agile Practices Principles From Service Orientation

• Short iterations
• Automated test
• Continuous builds
• Re-factoring
• Retrospectives
• Daily stand-ups
• Feature-based development

• Service reusability: Logic divided into services with the intention of
promoting reuse.

• Service contract: Services adhere to a communications agreement,
as defined collectively by one or more service description documents.

• Service loose coupling: Services maintain a relationship that minimizes
dependencies and only requires they maintain awareness of each other.

• Service abstraction: Beyond what is described in the service contract,
services hide logic from the outside world.

• Service composability: Collections of services can be coordinated
and assembled to form composite services.

• Service autonomy: Services have control over the logic they encapsulate.
• Service statelessness: Minimize retaining information specific to

an activity.
• Service discoverability: Services are designed to be outwardly

descriptive so they can be found and assessed by discovery mechanisms.

Principles from Model-Driven Development Principles from the Model-Based Acquisition Approach

phase.

cycles.

at the conclusion of each cycle.

Table 2: Selected Agile and Service Orientation Attributes Used by the ABM Development Process

Software Safety for Model-Driven Development

May/June 2009 www.stsc.hill.af.mil 11

utive. Should the assertion trigger, mitigat-
ing action will be taken by the safety kernel.
Additionally, assertions are used for mis-
sion assurance and at interfaces between
components. By establishing assertions
about the pre-conditions, post-conditions,
and invariants, the errors, defects, and faults
can be detected and addressed.

With behavior defined and assertions
established, the executable model is creat-
ed. Code is generated directly from the
base logic state charts and activity dia-
grams. Then, this behavioral logic capabil-
ity is augmented with the action code. The
functionality is layered in during nine-
week cycles. It is done in short iterations
so all incremental functionality can be
evaluated. The proper behavior is ana-
lyzed as the executable model functionally
grows by monitoring the assertions from
an orthogonal view. The test environment
is a key analytical tool that is equivalent to
an engineer’s workbench. Portions of the
assertion base are in the test harness and
are independent from the implementation.
They are always checking to see if a new
functionality has broken what had been
previously built. It allows for exercising
the executable model to analyze and
demonstrate anticipated behavior across
the broad dynamic range of the battlefield
environment. At the end of a cycle, the
product leaves the analysis phase and
moves into testing. Testing activities that
occur at this time are looking for defects
that escaped that phase of development.

The ability to economically develop
software in this model-driven fashion is
made possible by the advancing state of
practice in software engineering. These
practices continue to make mainstream
computer-aided software engineering
tools. Though mission assurance and safe-
ty concerns are moving into the software
development culture in the form of relia-
bility and safety engineering constraints,
software safety training is important.
Seasoned developers/engineers often
have the tools but not the experience and
do not know what is sufficiently complete
or correct when it comes to these con-
cerns. Some examples of definitions
developed for GEM Software Safety train-
ing include:
• Sufficient Completeness. The con-

sensus of all of the qualified reviewers
that the specifications and develop-
ments for each part of the presented
system and subcomponents are full
expressions to the extent that is fore-
seeable in regards to intended behav-
ior, intended performance, and intend-
ed environment.

• Sufficient Correctness. The consen-

sus of all qualified reviewers that a
software system and its components
are free from foreseeable faults in its
specification, design, and implementa-
tion in regards to intended behavior,
intended performance, and intended
environment.

• Intended Behavior. The planned
aggregate of response, reactions, or
movements made by a system in any

situation. This conversely includes the
planned prevention of undesired
responses, reactions, or movements.

• Intended Environment. Conditions
of the elements external to the system
that are planned to be affected by or
are currently effecting the employment
or deployment of the system.

• Intended Performance. The metrics
of system behavior over time. Ex-
amples are latency, throughput, avail-
ability, and utilization.

Requirements and Processes
Safety Assurance Requirements
Remain Unchanged
MIL-STD-882D [1] forms part of the
basis for the MDA’s safety guidance.
Awareness of these requirements is the
beginning point for software safety train-
ing. MIL-STD-882D guidance applicable
to software development includes:
• Unacceptable conditions that are con-

sidered unacceptable for development
efforts. Positive action and verified
implementation is required to reduce
the mishap risk associated with these
situations to a level acceptable to the
program manager [1].

• Acceptable conditions are considered
acceptable for correcting unacceptable
conditions and will require no further
analysis once mitigating actions are
implemented and verified [1].

A Safety Process for Waterfall
Software Development
When software is developed using the
classic Waterfall development process,
assuring that the software is safe is some-
times difficult. Nevertheless, the software
safety process applied to classical software
development is understood and practiced
by experts today. The 15-element Software
Safety Process (developed by APT
Research, Inc.), shown in Figure 2 (see
next page), is an example of a mature
approach.

The fundamental premise is to focus
the effort that is needed to perform soft-
ware system safety. This is classically done
by further focusing efforts on the safety
subset of the system software. The safety-
critical functions are identified from the
system requirements documents, the
prime development specifications, and the
preliminary hazard analysis. Those safety-
critical functions with direct or indirect
software control are then identified and
become the focus for the software system
safety effort. The safety-critical software
requirements that flow from the safety
functional requirements are then identi-
fied. The software safety personnel per-
form this step while coordinating with
system safety and software developers.

Adaptation for Model-Driven
Software Development
The system-level preliminary hazard
analysis provides the framework for rea-
soning about sub-system (software in this
case) hazard analysis in the form of candi-

Iterations
Increments

Cycles

The content of an iteration is completed feature sets with complete, automated test suites.
That is, iterations deliver working code with working tests every two weeks.

Figure 1: Three Major Release Categories for Software Functionality

“Though mission
assurance and safety

concerns are moving into
the software

development culture ...
software safety training

is important.”

Rapid and Reliable Development

12 CROSSTALK The Journal of Defense Software Engineering May/June 2009

date causes, contributors, controls, and
policies within the context of a given
required behavior. The differences start
here. The analysis activity at the develop-
ment level is not limited to the safety-crit-
ical software functions at first. During
each cycle, the incremental specification
and implementation draws the whole
development staff into identifying broad
environmental impacts and captures them
in the design artifacts and in a develop-
ment-level software assessment report
called the GEM Assessment Report
(GAR). This highlights the value of incor-
porating the software safety training pro-
gram into the GEM program. The result
is a highly collaborative, fully integrated
involvement for:
• Identification of hazards and con-

cerns.
• Evaluation of causes.
• Establishment of detection logic and

mitigation policies.
• Selection of mitigator strategies.
• Verification case definition, develop-

ment, and execution.
• Analysis of results.
• Collection of mitigation assessment

and test evidence.
The combination of hazards and con-

cerns coupled with the incremental devel-
opment activities enhances the defect
detection and avoidance mentality. The
safety subject matter expert(s) can provide
substantial leverage when mentoring the
development staff during these activities.

Each of the 15-element Software
Safety Process portions was examined for
application to each of the development
activities. In many cases, the elements
were revisited and incrementally built up
over the development cycles (see Table 3).

GEM Safety Activities Overview
The GEM Software Safety Activities to
support a model-driven, spiral software
development effort are shown in Figure 3.
The end result is a software safety pro-
gram that includes all of the fundamental
software safety elements, and incremental-
ly grows and matures as the executable
model evolves. The beginning of the soft-
ware development process is the safety
entry point into the GEM architecture and
product. For the approach to work, it is
critical to get buy-in from all stakeholders
prior to beginning development.

All members of the GEM develop-
ment staff should analyze their work in
the context of the program’s concerns.
The following GEM safety principles are
integrated into the software development
process:
• Reasoning through safety mitigation

IDENTIFICATION

1
Identify
Hazards

2
Identify SW
Safety-
Functional

Requirements

PREPARATORY
ANALYSIS

4
Analyze

Hazards for
Life Cycle

3
Define

Malfunction
Modes

System Requirements
System Safety Program Plan
Software Development Plan

Lessons Learned
Generic Safety Requirements

Software Products
Software Safety Checklists

IN
P

U
T

S

Program Management
Safety Management
System Engineering
System Safety
Software Safety

System Safety Working
Group

SW Developers
SW Testers

P
L

A
Y

E
R

S
U

N
P

L
A

N
N

E
D

IN
P

U
T

S

Changes
Failure Reports
Deviations
Waivers

O
U

T
P

U
T

S Preliminary Hazard List, Preliminary Hazard Analysis,
Subsystem Hazard Analysis, System Hazard Analysis,

Hazard Tracking System, Safety-Critical SW Requirements
Matrix, SW Safety Analyses, Test Plan Procedure Updates,

Independent Assessments

METRICS

5 Define
Safety-Critical
Software

6 Define
HW/SW*
Control
Measures

7 Verify
Design Meets
Requirements

8 Integrate
SW Effects
in Hazard
Analyses

9 Refine
Hazard
Severity

10 Tailor
Safety Effort
to Criticality

SPECIFIC
ANALYSIS

TEST
PLANNING

11
Define Test
for Critical
Functions

12
Prepare
V&V** Test
Planning

TEST and
ANALYSIS

13
V&V
Testing

14
Review V&V
Results

15
Determine

Final RACs***

* HW: Hardware ** V&V: Verification and Validation
SW: Software *** Risk Assessment Codes

Figure 2: 15-Element Software Safety Process [2]

GEM Safety Process Phase

Continuous Throughout Increment 1. Identify Hazards
2. Identify SW Safety-Functional

Requirements
Identification

3. Define Malfunction Modes
4. Analyze Hazards for Life Cycle

5. Define Safety-Critical Software

8. Integrate SW Effects in Hazard Analyses
9. Refine Hazard Severity

10. Tailor Safety Effort to Criticality

Preparatory Analysis

Specific Analysis1.0 Perform Initial Survey of the
Capabilities of the Cycle

6. Define HW/SW Control Measures

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

2.0 Create and Document Policies
for Domain Analysis – Use Cases

3a. Realization of Controls and Mitigation
in Collaborations/Algorithms

3b. Implement Controls and Mitigation

4.0 Select Verification Evidence
Approach for Use-Case Policies

11. Design Test for Critical Functions
12. Prepare V&V Test Planning

Test Planning

5.0 Evaluate Verification Cases for
Software Safety

12. Prepare V&V Test Planning

6.0 Safety Analysis of Verification
Results

13. V&V Testing
14. Review V&V Results
15. Determine Final RACs

Test and
Analysis

7.0 Create and Maintain the GAR
(input to C2BMC Safety Assessment
Report)

Updates to Safety Artifacts and Input to
C2BMC Safety Assessment Report N/A

Waterfall Development Agile/Spiral

Requires complete sets (requirements,
high-level design, low-level design, code,

d t t)

Proceeds with partial sets of overall development.

15-Element Software Safety Process

Table 3: Mapping APT’s 15 Elements to ABM Software Safety/Mission Assurance Analysis
Activities

Software Safety for Model-Driven Development

May/June 2009 www.stsc.hill.af.mil 13

options modifies design and imple-
mentation trade space.

• Stringent coding standards on safety-
critical software are required by MDA
safety requirements.

• Analysis is reviewed incrementally by
safety staff.

• Safety activities and artifacts are incor-
porated into the design from the
beginning.
Use cases are the mechanisms for

specifying GEM safety-required behavior
within the GEM behavioral specification.
Just as use cases provide the required
behavior view, the GEM assessment
report provides a view of the key con-
cerns, their causes, contributors, controls,
policies, and verifications as they have
been defined.

The following stakeholders are to per-
form safety activities:
• Domain analysts.
• Model designers/architects.
• Model developers/implementers.
• Testers/test analysts.
• Safety subject matter experts.

During the domain analysis, model
design, model development, and test, the
stakeholders must be alert for the intro-
duction of new hazard causes. New haz-
ard causes may require additional hazard
controls and verifications. Additionally,
new hazard causes, controls, and verifica-
tions must be traced to the implementa-
tion and GEM assessment report. In the
end, all stakeholders must become familiar
with key safety artifacts: hazard logs (or
database), hazard causes and controls, and
the traceability of required behavior.

System-Level Safety-Critical
Functionality Assessment Is
Still Fundamental
The fundamental safety premise still
holds: Clear enumeration of the agreed-
upon safety-critical functions and the
assessment of the level of mitigation that
exists in the implementation is needed.
The safety-critical functions are identified
and analyzed in context with the broader
environment for which they will operate.
Those safety-critical functions with direct
or indirect software control are then iden-
tified and become the focus for the soft-
ware system safety effort. The safety-criti-
cal software requirements flow from the
system-level safety-functional require-
ments. The software safety personnel per-
form this step while coordinating with
system safety and software developers.
However, by using the GEM software
safety activities, there is now a rich
cause/contributor assessment captured in

the development artifacts. Determining
the appropriate control to mitigate the
causes of the identified hazards has both a
top-down and a bottom-up component.

Observations and Conclusions
Advancing software development meth-
odologies lend themselves to a rich, com-
prehensive approach to safety analysis. It
provides an open working relationship to
incrementally identify the following causes
at various tiers of granularity:
• Selection of architecture principles.
• Design and implementation of strate-

gies for mitigators.
• Selection of verification cases that

both enhance analysis of properly
operating functions and mitigation
mechanisms.

• Collection of the needed evidence to
satisfy safety review boards.
The GEM software development

approach maintains verification logic as

additional functionality is added to the
growing product base. This software safe-
ty analysis complements system-level safe-
ty analysis, as is currently being practiced.

In conclusion, a comparison of soft-
ware safety in Waterfall development pro-
jects versus those that use Agile/spiral
approaches is found in Table 4.

Additionally, when it comes to modify-
ing the application of software safety
analysis for model-driven, spiral-devel-
oped software (using the GEM develop-
ment as an example) this article draws four
observations:
1. State of practice in software engineer-

ing continues to make mainstream
computer-aided engineering tools.
Mission assurance and safety concerns
are moving into the culture in the form
of reliability and safety engineering
constraints. Training is important, as
seasoned developers/engineers do not
know what is sufficiently complete or

Figure 3: GEM Software Safety Activities

GEM Safety Process Phase

Continuous Throughout Increment 1. Identify Hazards
2. Identify SW Safety-Functional

Requirements
Identification

3. Define Malfunction Modes
4. Analyze Hazards for Life Cycle

5. Define Safety-Critical Software

8. Integrate SW Effects in Hazard Analyses
9. Refine Hazard Severity

10. Tailor Safety Effort to Criticality

Preparatory Analysis

Specific Analysis1.0 Perform Initial Survey of the
Capabilities of the Cycle

6. Define HW/SW Control Measures

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

6. Define HW/SW Control Measures
7. Verify Design Meets Requirements

2.0 Create and Document Policies
for Domain Analysis – Use Cases

3a. Realization of Controls and Mitigation
in Collaborations/Algorithms

3b. Implement Controls and Mitigation

4.0 Select Verification Evidence
Approach for Use-Case Policies

11. Design Test for Critical Functions
12. Prepare V&V Test Planning

Test Planning

5.0 Evaluate Verification Cases for
Software Safety

12. Prepare V&V Test Planning

6.0 Safety Analysis of Verification
Results

13. V&V Testing
14. Review V&V Results
15. Determine Final RACs

Test and
Analysis

7.0 Create and Maintain the GAR
(input to C2BMC Safety Assessment
Report)

Updates to Safety Artifacts and Input to
C2BMC Safety Assessment Report N/A

Waterfall Development Agile/Spiral

Requires complete sets (requirements,
high-level design, low-level design, code,
and test cases).

Proceeds with partial sets of overall development.

The focus on smaller details is achieved in
later phases.

The overall viewpoint is achieved in later phases.

Testing begins later in the development. Partial sections are tested sooner.

Lessons learned acquired in later phases. Lessons learned acquired in earlier phases.

The size of the set of changes for correction/
enhancement tends to be larger.

The size of the set of changes for correction/
enhancement tends to be smaller and occur
incrementally.

Configuration management is easier since the
initial set of requirements tend to be fixed.

Configuration management is harder due to
needed response to growing and varying
requirements.

It is in later phases that the complete set of
details come together that influence safety
concerns.

It is in later phases that the overall viewpoint for
efficient mitigation implementation can be selected.

15-Element Software Safety Process

Table 4: Comparison of Waterfall and Agile/Spiral Approaches

Rapid and Reliable Development

14 CROSSTALK The Journal of Defense Software Engineering May/June 2009

correct when it comes to these con-
cerns.

2. System-level preliminary hazard analy-
sis provides a framework for reasoning
about software causal analysis in the
form of candidate causes, contribu-
tors, controls, and policies within the
context of a given required behavior.
The use of incremental specification
and implementation draws the whole
development staff into identifying full
environmental impacts that are cap-
tured both in the design artifacts and a
development-level software assess-
ment report. The importance of soft-
ware safety training cannot be under-
estimated. The approach enhances the
defect detection and avoidance men-
tality and allows the safety subject mat-
ter expert to mentor the development
staff and have a high impact during
these activities.

3. Safety-critical functions at the system
level are used to define safety-critical
software functions. These functions
are reasoned through at the system
level, and use the candidate policies to
identify which policies will be tracked
as safety-critical. The total approach
provides both a top-down and bot-
tom-up assessment.

4. Active safety subject-matter expert
involvement is required in software
development phase sometimes as the
lead, sometimes as a mentor. This
allows the program to gain the values
afforded by advancing engineering
techniques.u

References
1. DoD. “Standard Practice for System

Safety.” MIL-STD-882D, Appendix A.
10 Feb. 2000 <http://safetycenter.
navy.mil/instructions/osh/milstd
882d.pdf>.

2. APT Research, Inc. “The Safety
Engineering and Analysis Center.” 15
Oct. 2007 <www.apt-research.com/
pages/about/S-07-00100_SEAC_
Booklet.pdf>.

Note
1. If manage-by-exception actions are

warranted, the warfighters are to adap-
tively direct sensor and weapon system
activities in coordination with the ele-
ment commander. Event-triggered
automated actions for elements are
coordinated with similar automated
actions by the GEM decision aid.

About the Authors

Timothy J. Trapp is the
global engagement man-
ager chief engineer with
the Missile Defense
National Team/C2BMC.
He has 25 years experi-

ence with the design, development, man-
agement, and operations of DoD and
commercial interactive systems that are
integrated with communications infra-
structures. He holds a bachelor’s degree
in electrical engineering from Purdue
University and a master’s degree in engi-
neering management from George
Washington University. Trapp also holds
a patent on the use of multicast-based
distribution for timely and real-time data.

Raytheon
2611 Jefferson Davis HWY
STE 700
Arlington, VA 22202
Phone: (703) 418-4288
E-mail: tim.j.trapp@mdnt.com

Howard D. Kuettner, Jr.
is the software safety lead
for a major system devel-
opment program at APT.
He has more than 35
years experience in sys-

tems and software development, systems
and software test, and systems and soft-
ware safety. Kuettner has been a member
of the System Safety Society (Tennessee
Valley Chapter) since 2000, and was
named their Engineer of the Year for
2003. He has a bachelor’s degree in
physics, and has co-authored papers pre-
sented at prior International System
Safety Conferences.

APT Research, Inc.
4950 Research DR
Huntsville, AL 35805
Phone: (256) 327-3383
E-mail: hkuettner@apt-research

.com

Donald S. Hanline II is
a system safety engineer
for the U.S. Army Avia-
tion and Missile Com-
mand (AMCOM). He has
more than 25 years of

experience in the aerospace industry, with
nine years of systems safety and software
systems safety experience on command
and control and weapons system develop-
ment programs. Hanline serves the
AMCOM Safety Office on independent
safety review boards, the development of
Army and AMCOM software system
safety requirements, and software system
safety training. He has bachelor’s degrees
in chemistry and mechanical engineering
from the University of Alabama in
Huntsville.

U.S.Army AMCOM
ATTN:AMSAM-SF-A
Redstone Arsenal, AL 35898-5000
Phone: (256) 842-3248
E-mail: donald.s.hanline

@us.army.mil

William A. Christian is
currently a software safety
engineer for the GEM at
APT. He has more than
30 years experience in the
hardware and software

requirements, design, implementation,
and test. Christian has co-authored a
paper on reviewing code for requirements
verification and has spent more than 20
years in developing software for instru-
mentation, intercom systems, databases,
and testing radio frequency applications.

APT Research, Inc.
4950 Research DR
Huntsville, AL 35805
Phone: (256) 883-3474
E-mail: bchristian@apt-research

.com

